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THE CALCULATION OF WALL AND FLUID TEMPERATURES
FOR THE INCOMPRESSIBLE TURBULENT BOUNDARY LAYER,
WITH ARBITRARY DISTRIBUTION OF WALL HEAT FLUX*
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Abstract—Numerical solution of the partial differential equation for heat transfer in the incompress-
ible turbulent boundary layer has been obtained for uniform (gi;/pCyit1)/ v (¢s/2) and for Prandtl
numbers 0-7, 1 and 7. The Spalding boundary-layer velocity law was assumed, and the Schmidt

method of integration used. Boundary-layer temperature distributions up to x+ =

10® are presented,

together with the “Spalding function” St/+. {¢/2). A method is given for the application of the solutions
to the case of arbitrary distribution of heat flux at the wall.

NOMENCLATURE

a, distance along the wall at which
heating starts;

Cp, specific heat at constant pressure
of the fluid;

cs/2, friction factor, v/ pu;

h, coefficient of heat transfer,
Gl Tws

k, thermal conductivity of the
fluid;

Pr, Prandtl number, pCpr/k;

heat flux at the surface;
qw/[pulCm/(Cf/Z)] = (0T/0¢)y, wall heat flux

parameter;

St, Stanton number, i/ pu,Cyp;

St/+/(cs/2), Spalding function; §

7, difference in temperature be-
tween a point in the boundary
layer, and the mainstream ;

Ty difference in temperature
between wall and main-
stream;

u, velocity in boundary layer,

parallel to surface;

* This is a part of a research sponsored by U.S. Air-
force under contract number AF61(052)-267.

t University of Nottingham, England.

1 The College of Aeronautics, Cranfield, England.

§ Note that this definition differs from that of Kestin

. and Persen {2] who use St Pr/\/(c;/2).
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X,
xt,

x5,

€hy

ea,b,c,

velocity in mainstream;
dimensionless velocity in bound-
ary layer, defined by equation
(5);

friction velocity, v/(mu/p);
velocity of the fluid, normal to
the wall;

co-ordinate of distance along
the wall;

dimensionless distance along the
wall, defined by equation (3);
dimensionless distance between
points x = a and x = b, defined
by equation (27);

distance normal to the wall;
dimensionless distance normal
to the wall, defined by equation
4);

thermal diffusivity, k/pCp;
dimensionless thermal diffusiv-
ity, defined by equation (7);
eddy viscosity;

dimensionless eddy viscosity,
defined by equation (6);

eddy thermal diffusivity;
dimensionless temperature 7/7T;
value of # at point ¢ for constant-
heat-flux parameter between

x =g and x = b;

kinematic viscosity of the fluid;



s density of the fluid;
£, dimensionless distance from the
wall, defined by equation (8);
Tos shear stress at the wall.
INTRODUCTION
SPALDING [1] has introduced a ““law of the wall”
in which the dimensionless distance from the
wall is given as a single function of the dimen-
sionless velocity. Using a transformation of the
energy equation due to Spalding [1], it is possible
to compute temperature fields for the cases:

(1) step function of wall temperature;
(2) step function of the heat-flux parameter

Gi:/Pulcp\/(Cf/z)-

Computation of these cases then permits solu-
tion of the cases:

(1) arbitrary distribution of wall temperature;
(2) arbitrary distribution of wall heat flux.

The step function of wall temperature has
been dealt with by Kestin and Persen [2], for
Prandtl number unity. The step function of wall-
heat-flux parameter is dealt with in the present
paper for Prandtl number 0-7, 1-0 and 7. The
last section of the paper shows how to compute
the temperature at the wall, and within the
boundary layer, for an arbitrary distribution of
the heat flux at the wall.

THEORY
By use of the Von Mises transformation,
Spalding [1] has reduced the energy equation
for a turbulent incompressible boundary layer

or aT__a 8T_L 0 0
TR Tl R TR T B

u
into
T 1 & [a* oT] )
ot~ et ut | < aut @
where
@ X
X*=J de:j wdx g
a v a V
. '\/(Tw/p) _ u1y
= MR, B @
u “ Y and ut = oY)  (5)
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dyt

(6)

(this implies that shear stress is independent of y)

1 €n
R T
* Pr+ )

v

Q)

Further, using a new variable ¢ defined by

et
d¢ = s dut, ®)
equation (2) can be reduced to
oT 1 e2r
Gxt " utat a8 ©)
Boundary conditions are
T=0 at ¢=ow
T=0 at x+<0.} (10)

An additional boundary condition in the present

solution is
(BT) "
= = const.
9€) r=o

Spalding [1] has derived a single expression
for the distribution of the velocity and in the
universal turbulent boundary layer in the form
of y*(u*) instead of the usual form u*(y*). It is

(11

y+:u+
Ku+)2 Ku+)y?
+;[€K"+——1——Ku+—( ;‘l-—(gr)*
(Ku*)t
~—4!‘}. (12)

with K = 0-407 and 1/E = 0:0991.
From equation (12) an expression for e+ can
be obtained, using equation (6). This gives

et =1

K

(Ku)?
tTE

[CKu+ — 1 — Kut — —2—'— (Klﬂ;] .

Y
(13)
A further assumption that the turbulent Prandtl
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number is unity (ep, = €) leads to an expression
for a*

Pr
K{ . (Kuy®  (Kui)®)
LI Ru* __. e KUY s e e e
Ak b Kum= =y, 3
(14)

Therefore the quantity u*a™*, for various Prandtl
numbers, can be obtained as a function of ¢£.
This reduces equation (9) to

or 1 é&T

T = .S S 15

ot T e 13
The values of f(¢) for Pr==0-7, 1 and 7 are
shown in Fig. 1.

55

&) =utat

FiG. 1. Values of u* a* (¢).

For the case of uniform surface temperature,
various investigators have solved equation (15).
Spalding [1] has solved it approximately for
Pr =1, by use of the energy integral equation
and by assuming a temperature profile in the
boundary layer. Muralidharan [3] has solved it
on an analogue computer for Pr = 07, 1 and 7.

L
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Kestin and Persen [2] have solved it on a digital
computer for Pr == .

In the present paper, a solution of equation
(15) has been made for uniform &T/0¢ at the wall
and for Pr =07, 1 and 7.

NUMERICAL SOLUTION
1t will be seen that equation (15) is very similar
to the heat-conduction equation, and may be
solved by the finite difference methed of E.
Schmidt.
The equation (15) can be written in finite-
difference form as

Trygeto — Tirtop

dx+
(e Tt grap + Tiatie-a0

2. 16

From equation (16), T, -, .+ can be calcu-
lated from T (;+) which in turn can be calculated
from T+_,+), and so on. The grid for the
finite-difference scheme is shown in Fig. (2).

14 24
n —
a¢ \
13 | 23
-0
a¢ /
12 22
Aa¢
i
x* xT - dxv

F16. 2. Grid for the finite difference scheme.

From Fig. 2 it can be seen that all the values
of temperature can be calculated for T+, .+
from T (z+, except for two end valucs, one at the
wall and the second at £ -= {max. The latter
difficulty was met by selecting £max so high that
T there was zero. The value of T at the wall was
obtained by adding the wall temperature
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gradient X 4§ to the value of the temperature at
(x* + dxt, 4¢).

To obtain the numerical results in solving
equation (15), the complete calculations were
made for an arbitrary value (67/0§),-, = — 40,
and later the results were made dimensionless.
The number — 40 has no particular significance.

It was not possible to start the solution at
x* = 0 because the temperature at all values of
¢ at x* = 0 was zero. This difficulty was over-
come by starting the solution at a very low value
of x+ called x7. The starting value of xT for
(0T[08)g=o = — 40 was selected such that the
temperature dat all values of ¢ was zero except
at the surface. This first-assumed value of the
surface temperature T, was obtained from the
approximate analysis of Smith and Shah [4].
The final results, when checked by integrating
the heat flux, showed that they were not affected
by any error in this assumption. The starting
values for various Prandtl numbers are given in
Table 1.

Table 1
Pr Ty xty 4¢
0-7 19-30 0-050 05
10 19-41 0-025 05
70 38-50 0-004 1-0

The solution by the method of E. Schmidt is
stable only if the condition

Ax+

@@ <t (7

is fulfilled throughout. Since it was decided to
solve the equation up to x* = 108, the interval
Ax* was increased gradually as shown in Tables
2-4. With the increase in the interval dxT, it
became necessary to increase 4¢ near the surface
(low values of £) to fulfill the above condition.
As the values of £ (£) increase with £, the interval
4¢ was gradually reduced for the calculations
away from the surface. Near the surface, the
temperature profile gradually became linear and
therefore this increase in 4¢ near the wall, with
the increase in the interval 4x* did not impair
the accuracy of the final results.

A. G. SMITH AND V. L. SHAH

Table 2. Steps chosen for Pr = 07

Interval x+ Ax+ 4¢ Max. 4¢
0-1 0-05 0-5 05
1-10 01 05 0-5

10 -10% 1 05 1

10%-103 1 05 1

104-10° 50 05 4

10%-108 500 05 8
Table 3. Steps chosen for Pr =

Interval x * dx* Af Max. 4¢
0-1 0025 0-5 05
1-10 05 1 1
10 -102 1 1 1
10%-10° 4 1 2
103-10* 20 1 4
104-10° 25 1 4
10%-108 250 1 8

Table 4. Steps chosen for Pr = 7

Interval x+

dx+ a¢ Max. 4¢
0-1 0005 1 1
1-10 0-05 1 2
10 -10? 05 1 4
10%2-10? 1 2 6
10°-10% 5 2 8
10%-105 25 2 14

FORM OF PRESENTATION OF THE RESULTS
The numbers resulting from the computations
are temperature differences T in &, x* co-
ordinates, with (07/0¢);=o = — 40. Heat-trans-
fer coefficients may be computed conveniently
from such results in terms of the “Spalding
function” St/4/(cy/2), by the relation, deduced

from equations (4), (8) and (12),
St (0T/0€)g=o

Viedd ~ T T (18)
Thus [St/4/(cy/2)] (xt) can be presented. Note,
further, that
st i.
V(er2) — pCouTun/(cs/2)

(19)
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Assuming that ¢;/2(x) and w(x) are known
for a specific example, x*+(x) may be computed
from equation (3). Hence, from [S?/+/(c/2)] (x1),
St(x) may be computed. Then, knowing the
constant value of qw/pCpu1V(Cf/2), Tw may be
found. Treatment for arbitrary 4., is shown in a
later section.

For the temperature within the boundary
layer, it will then suffice if 6(¢, x*) be presented.

A practicable presentation is thus of

[S1/v/(es/D] (x*) and 8(¢, x*).

CHECK BY HEAT BALANCE
An integral form of equation (15) may be
derived by integrating it along the £ co-ordinate.
Thus

d (= ¢
EL Tuta+ dg — — (6_95 (20)

In our solution (67/8§),~, = const. and there-

fore
[ rvarae = () =
0 O£/ =0

Therefore, from equations (18) and (21) we have

St
Ve ™

The temperature profiles obtained in the
numerical solution were integrated at various
sections and the integrated heat fluxes were
compared with the Spalding function and x*
as shown in equation (22). Comparisons for
various Prandtl numbers are tabulated in Tables
5-7. The results were found reasonably satis-
factory.

2y

r Burat d¢ — (22)
0

Table 5. Integrated check of the results for Pr = 07

St i
+ e — I futatd, %, differenc
o Tem o ¢ 7 difference
10 3-810 3:838 +0-72
102 17.97 18-07 +0-54
108 97-15 97-21 +005
10t 653-6 652-4 —018
108 4952 4876 —1-54
108 39 660 39780 -+0-30
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Table 6. Integrated check of the results for Pr = 1

x* L x* r Outet dg 9 difference
v{(cr/2) 0
10 2-965 3:010 +1-51
10% 14-18 14-22 +0-30
10% 77-28 77-48 0-27
10 544-1 546'6 +-0-44
108 4293 4298 +0-11
108 35320 35190 —0-37

Table 7. Integrated check of the results for Pr = 7

St

Q
+ ndde Butat o/ di
VD x L u d¢ 9 difference
10 0-8185 0:7994 —2-33
102 3-844 3-856 4031
108 20-75 20-57 —0-87
104 171-3 1712 —0-06
10% 1571 1579 +0-52

DEPENDENCE OF THE SPALDING FUNCTION
AND ¢ ON THE PRANDTL NUMBER

The results of the calculations in terms of the
temperature profiles are shown in Figs. 3-5.
The values of the Spalding function for various
values of x+ and for Prandtl numbers 0-7, 1 and
7 are tabulated in Tables 8-10 and plotted in
Fig. 6.

36

32

28

24p—- -

FiG. 3. Temperature profiles for Pr = 0-7.
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2

FiG. 4. Temperature profiles for Pr = 1.

Table 8. The Spalding function St/ \/{c,/2) for Pr = 0.7

St Sr
Xt Vi) x! Ve
1 0801678 | 1 x 10" 0097158
2 0642647 | 2 x 10° 0-084421
3 0-563886 | 3 x 10° 0-078568
4 0513691 4 % 10° 0074916
5 0477754 5 % 10° 0072325
6 0-450215 6 > 10° 0-070346
7 0428144 | T x 10° 0-068760
8 0409884 | 8 10° 0-067446
9 0-394414 9 x 10° 0-066330
10 0381063 | 1 10¢ 0-065363
20 0300255 | 2 x 10* 0-059528
30 0-263463 3 % 108 0-056654
40 0240197 : 4« 100 0-054776
50 0223636 . 5 10} 0-053401
60 0211018 | 6« 104 0-052325
70 0200964 | 7 x 10* 0-051448
80 0192695 | 8 » 10t 0-050711
90 0185731 | 9 » (0t 0050077
1% 108 0179756 1% 10° 0049523
2% 108 0146030 | 2 % 10F 0-045895
3100 0130328 | 3. 10° 0044175
4100 0120738 | 4 100 0-043020
5 < 102 0114091 | 5 x 10P 0-042159
6 < 102 0109125 6« 108 0-041476
7 % 102 0-105228 7 108 0-040913
8 x 102 0-102059 8« 10° 0-040436
9 < 102 0099413 9 . 10° 0-040023
108 0-039660

)
Fi1G. 5. Temperature profiles for Pr = 7.

Table 9. The Spalding function St/~/(¢,/2) for Pr = 1

St St
x* v (€4/2) | x! \es/2)
1 061424 1w 108 007728
2 049137 2 % 108 0-067892
3 043359+ 3 x 10° 0-063685
4 039639 | 4 x 10° 0-061115
5 036957 | 5 10 0-059300
) 0-34889 6 x 103 0-057914
7 033224 7 % 108 0-056803
8 031841 8 » 10° 0-055880
9 030667 | 9 x 10° 0-055095
10 029650 | 1 % 10% 0-054413
20 0-23723 2 x 10% 0-050335
30 0-20810 3 x 10 0-048244
40 0-18965 4 < 10 0-046863
50 017709 . 5 x 10% 0-045843
60 0-16652 g 6 » 10t 0-045042
70 015856 | 7% 10t 0-044385
80 045201 | 8 10° 0-043830
90 0-14650 g« 10 0-043351
1% 10° 014177 1w 108 0-042931
2 x 102 O-11513 | 2 < 108 0-040295
3 % 102 010281 | 3« 108 0-038927
4 x 102 009510 | 4 x 10° 0-038007
5 % 102 008998 5 < 10° 0037319
6 x 10° 008621 6 x 10 0036774
7 % 10* 008327 7 % 108 0036324
8 » 10% 0-08091 8 < 10° 0035943
9 % 10% 007894 9 x 10° 0-035612

108 0-035321
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FiG. 6. The Spalding function [S#/+/(¢cs/2)] (x*) for Pr =07, 1 and 7.
Table 10, The Spalding function St/\/(c;/2) for Pr = 7 T \ ! [ )
N = e 40 : — I l 1
‘; P
*é‘f 3 7 S{’ - ‘ ‘9¢'l/‘=/)=5;7"r91=\>
x* Vies2) x+ Ve \ | Wnere 6o g (PrPTS
30 . ; | ! —
1 0172205 1% 10° 0-020749 \\‘ |
2 0137977 2x 160 0018916 l
3 0-121054 3 % 10° 0-018277 \ }
4 0110283 | 4x10° 0017932 ¢ LN A7 L
5 0102576 5 x 108 0-017705 ‘ \ ‘
6 0096672 | 6 x 10° 0017537 | N o
7 0-091940 7 % 10? 0-017406 | | ‘ | ! i \
8 0-088025 8 x 108 0-017297 & ‘) i ! I !
9 0-084709 9 x 10? 0-017206 0 \ . 4“
Pre ' \
10 0-081847 1 x 10* 0-017127 1 _ ‘ \
20 0-064768 2 x 10 0:016646 L Pr=0-7 l
30 0-056777 3 % 108 0-016395 o R < o= 55 N,
40 0-051701 4 x 10 0-016225 P
50 0-048080 5 % 104 0-016096
60 0:045315 6 x 10t 0:015993 Fic. 7. Temperature profiles for various Prandtl
70 0-043107 7 % 10¢ 0-015907 numbers (x* = 100) (laminar region).
80 0041289 8 x 10¢ 0-015834
90 0-039754 9 x 10¢ 0-015770 Having performed these calculations and
10 OOISTI3  hecks, an effort was made to find the depen-
1 % 10 0038435 dence on Prandtl number of the Spalding function
2 % 107 0030841 and the temperature profile in the form
3 x 102 0-027396
4 x 102 0-025336 St St % P (23)
2 . —— ’,
PO A e Vier2) ~ IV erdDlry
7 x }8: 8‘8%%})(9)6 Results for Pr = 0-7, 1 and 7 showed that in the
g i 102 0702“3; laminar region (up to x* = 1000) the value of »n

remains constant and is equal to — 2/3; but, for
higher x*, the value of n when obtained from the
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results for Pr = 0-7 and 1, changes from - 2/3
at x* = 1000 to — 04 at x+ = 10% and — 0-325
at x+t == 10% whereas from the results for
Pr =7, the value of n decreases from — 2/3 at
= 1000 to — 0-516 at x*+ = 105,

In the laminar region (x* < 1000) the
temperature profile for any Prandtl number can
be obtained from

b =0 pron (24)

where
§=1¢ X Prs, (25)

Temperature profiles for various Prandtl
numbers and for x+ = 100 are shown in Fig. 7.

APPLICATION OF THE SOLUTIONS TO THE
CASE OF ARBITRARY HEAT FLUX AT THE WALL

The working equatlon by which the numerical
solutions given in this paper may be applied is
equation (32) below. A full statement of its
development is given in sections A and B
following.

A. Determination of temperature at the wall

The numerical solutions given in the previous
sections have the boundary condition
(8T/9£)y = const. x* > 0. From the definitions
of the variables in equations (6-8) and earlier,
together with the velocity-law equation (12),
this boundary condition is the same as
l4.] pule\/ (cs/2)] = const. That is, the heat flux
parameter is constant,

This boundary condition is highly particular:
usually problems will be met in the form of a
specified distribution of ¢, with T,{x) the
quantity desired to be known.

However, the treatment of the problem of
arbitrary ¢, will be most easily perceived after a
recapitulation of the method of determination
of Tyu(x) for constant g,/ pu, Cpr/(cy/2).

Fig. 6 gives values of the Spalding function
[St/4/(cs/2)] (Pr, xt). If St/+/(cp/2) be known at
a given x, then T, is given by

T [ 4, }
St]v/(cr/2)  LpnCov/(cs/2)]

In Fig. 6, heat injection starts at x = a. The
problem is, then, to calcuate the temperature
Tp@ at x=»5, consequent on constant

Ty = (26)

A. G. SMITH AND V. L. SHAH

g.] ou;Cpr/(c5/2) between x = a and x = b.

17 ks as

Define a new variable x, 5 by the equation

xt = Jb V(7w/p) dx

ab @27)
Then x7, is easily calculable, knowing mu(x), p
and v. From Fig. 6, [St/\/(cs/2)]z,» may be read
off, for x+ = x7,. This quantity is the value of
[St/4/(cs/2)] at x == b consequent on constant
[4.] pu; Cpr/(c5/2)] from x = a to x = b. Then at
x = b the difference T, ) between wall tem-
perature and mainstream is given by

1 G
Tots = siverin o G )e @
It must be particularly noted that equation (28)
holds for constant §,/pu;Cpy/(cs/2) between
x=qa and x = b. However, in the general
problem, ¢,/ pu1Cp'\/(Cf/2) will be a function of
x. Knowmg qw(x), 1,(x), c¢(x), the dependence of

SN /{n mnntad
‘fw! ‘vulvg)y \u]{t.) Oon X may of u\;,u.s};u\.\.u

temperature at the wall at x = b is then given
by the Stieltjes integral

Tha
ine

b 1
Twm = L IStV (Ce2)lap

v
P
Equation (29) is the working equation for the
determination of wall temperature. In equation
29), [St/v/(cs/Dla,p is the value of St/4/(cy/2)
at b, consequent on constant §./pt;Cpr/(€1/2)
between x = g and x = b, d{g./ o, Cpv/(cr/2))a
is the increment of heat-flux parameter for the
increment dx containing x = a. It may be more
convenient for computation if equation (29) is
rewritten:

b 1
Tww = L St Dl

d g }

e e o N IR £ 30
dx [pulcm/(cffz) A GO
In evaluating equation (30), however, it must be
noted that if there is a step in ¢,/ puICp\/(ch/Z),
this step contributes an increment of T, ) given
by
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1

Ao = {57 Dhn

In equation (31), the symbol 4 signifies a finite
increment.

B. Determination of temperature within the
boundary layer

The previous section showed the method of
computing wall temperature consequent on an
arbitrary distribution of wall heat flux. A further
problem is, however, the determination of
temperature within the boundary layer. Again
the method will be seen more easily if the
computation for constant ¢./pu,Cpr/(cs/2) is
first considered.

Temperatures within the boundary layer have
been presented in Figs. (3-5) as 8(x*, ¢, Pr). 6,
defined as in the Nomenclature, is in fact
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temperature on a scale such that mainstream
temperature is zero and wall temperature is
unity. The temperature at a point in the bound-
ary layer is defined if T, and 8 be known. The
relation is: T = 0T,

Concentrating our attention on the case of
constant §./pu;Cp4/(cy/2), and temperature
difference between wall and mainstream at
x == b, called Ty, ), may be found by the method
of the previous section. The problem now is to
find the fluid temperature at point ¢ with co-
ordinate x, y. Of the parameters in Figs. 3-5,
x* and Pr are already known. To determine ¢
and thus permit the determination of temperature
at y, the dimensionless co-ordinate ¢ must be
determined for the point c¢. ¢ is defined by
equation (8), and equations (5-8) and (12-14)
permit the function é(y+, Pr) to be computed.
Results of this computation are shown in Fig. 8
and Table 11. Using Fig. 8, £ may therefore be
found, after y+ has been determined from
equation (4). Thence § may be read off Fig. 3, 4

Table 11. ¢(y*, Pr) and y*(u*)

ut y* ¢ Pr=07 & Pr=1T0 ut yt ¢ Pr=07 ¢ Pr=10
0 0 0 0 19 2190 15-90 5935
1 1 07 6999 20 3286 16:89 6036
2 2 14 13-99 21 494-6 17-89 61:36
3 3-003 2:101 20-88 22 7456 18-88 6237
4 4-013 2-803 2750 23 1124 19-87 6337
5 5042 3-509 33-48 24 1696 20-87 64-37
6 6115 4223 38-48 25 2557 21-87 6538
7 7274 4-953 4235 26 3854 22-87 66:38
8 8-590 5702 4525 27 5806 23-87 6738
9 10-18 6-496 47-44 28 8743 2487 68-38
10 12:23 7322 4918 29 13 160 2587 69-38
11 15-04 8189 5062 30 19 800 2687 7038
12 19-06 9-092 51-90 31 29780 2787 71-38
13 2498 10-02 5307 32 44780 28-87 7238
14 33-88 1098 5418 33 67310 29-87 7338
15 4736 11:95 5525 34 101 200 30-87 7438
16 67-88 12:92 5629 35 152 100 31-87 7538
17 9913 13-91 5732 36 228 500 32.87 7638
18 1467 14:90 5834 37 343 400 33-87 77-38

(@) For Pr=1, £ = ut,
(b) For y+ > 300 the following relations hold.
yt+ = 0-3255 exp (0-4098 ¢) (Pr = 0-7),
y+ = 009177 exp (0-4093 ¢&) (Pr = 1-0
yt = 6317 x 10~? (exp 0-4088 £) (Pr = 7-0).
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o}

Fici. 8. Values of £(v-, Pr).

or 5. The difference of temperature between
point ¢ and the mainstream is then

T i (}?'b,‘c ) [ ‘} n: .
ew ISt/ (e 2)a [ prn Cpn (2}

in equation (32), fap,. is the value of 4 at
x' .- x), and the appropriate £. [St/\/(¢//2)as
is the value read off Fig. 6 at v~ - x; and
g.1 ptiyCpr (07/2) is the constant value of the heat
flux paramcter between x =g and x b,
When there is an arbitrary distribution g,(x),
the distribution of the heat-flux parameter may
be computed as described in the previous section
of the paper, and the valuc of the difference in
temperature between point ¢ and the mainstream
may be computed by the Stieltjes integral:
T _ j." a0 i q.
YO ISt v e [P%Cza\-‘lrffﬁ_

{32y

&®

(33

Equation (33) is the gencral equation by which
the resulis of this paper may be applied, since it
comprehends equation (29) in that, at the wall,

fq,5.~ is unity. Again it may be morc convenient
for computation if the equation is rewritten

T ‘\b (»’]a,ii.c

ey - <3 Lo -

® Ja [StA (e 2D an

dJ q.

B "‘, o] da.
dy | pr G (/) |a
In the evaluation of equation {34} care must be

taken in allowing for steps in §./pu, Cpy (¢4/2),
as was pointed out after equation (30).

(34)
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Résumé—Une solution numérique de I'équation aux dérivées partielles du transport de chaleur dans la

couche limite turbulente incompressible a été obtenue pour (¢,,/ pC, ,)1/ v/ (¢5/2) constant et pour les

nombres de Prandtl 0,7, 1 et 7. La loi des vitesses de Spalding a été adoptée et on a utilisé la méthode

d’intégration de Schmidt. Les distributions de températures dans la couche limite sont dcnnées pour

des x* allant jusqu'a 10%, en méme temps que la fonction de Spalding St/+/(c;/2). On donne une

méthode pour I'application de ces solutions au cas d’une distribution arbitraire du flux thermique a
la paroi.

Zusammenfassung—Fiir den Wirmeiibergang in der inkompressiblen turbulenten Granzschicht wurde
die numerische Losung der partiellen Differentialgleichung bei konstantem 4.,/ pC, u, (c;/2)"V/% er-
halten fiir Prandtlzahlen 0,7, 1 und 7. Das Spalding-Gesetz der Grenzschichtgeschwindigkeit ist voraus-
gesetzt, die Integration wurde nach der Schmidt-Methode durchgefithrt. Die Grenzschichttempera-
turverteilungen bis x+ = 108 sind zusammen mit der “Spalding-Funktion™ St(c;/2)—*/? angegeben. Fiir
beliebige Verteilung des Wirmeflusses an der Wand ist eine Losungsmethode beschrieben.

Amnoranua—Ilonyueno yncienHoe petieHHe TUPPEPEHIMATBHOTO YPABHEHMH B YACTHBIX
NMPOUBBOTHEIX LA IepeHoca TemiTa B TYpOYJIeHTHOM IOTPAHMYHOM CJI0€ HECHIMAeMOil
MUTKOCTH [P [NOCTOAHHOM Besmuniie §./pC, ui(c;/2)~Y® w amavenusnx kpurtepus Ilpauntis,
pasrbix 0,7, 1 u 7, Ilpunnt saxon COOATUHIa 1A CKOPOCTH MOTPAHHYHOIrO CJIOA M MCTIOJb-
30BaH MeTOoN uHTerpupoBanus Ilmuara. IIpuBORATCH 3HAYEHHSA pacupegeleHNA TEMIEPaTyp
HOTPaHUYHOTO ¢J0f A0 x*t = 10° Bmecre ¢ «pyuruueit Crnomguuray St(c/2)"V:. Iaerca
METO[ HpHUMEIeHUA peilleHHii K CIy4arw IIPOU3BOJIBHOIO pacnpe;elleHUs TeIaoBOr0 IMOTOKA
Ha CTeHKe.



