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THE CALCULATION OF WALL AND FLUID TEMPERATURES 

FOR THE INCOMPRESSIBLE TURBULENT BOUNDARY LAYER, 

WITH ARBITRARY DISTRIBUTION OF WALL HEAT FLUX” 

A. G. SMITH? and V. L. SHAH$ 

(Receiz,ed 6 May 1962) 

Abstract-Numerical solution of the partial differential equation for heat transfer in the incompress- 
ible turbulent boundary layer has been obtained for uniform (~$~/&,a)/ v (42) and for Frandtl 
numbers 0.7, 1 and 7. The Spalding boundary-layer velocity law was assumed, and the Schmidt 
method of integration used. Boundary-layer temperature distributions up to x+ = lo8 are presented, 
together with the “Spalding function” Stf t (c,/2). A method is given for the application of the solutions 

to the case of arbitrary distribution of heat flux at the wall. 

NOMENCLATURE 

4 distance along the wall at which 
heating starts; 

C,, specific heat at constant pressure 
of the fluid; 

Cfl5 friction factor, rw/puf; 

h, coefficient of heat transfer, 
4JTW ; 

k thermal conductivity of the 
fluid ; 

pJ-9 Prandtl number, PC&k; 
.,I 

4 heat flux at the surface; 
&[pu,C,~(c~/2)] = (Z/@$,, wall heat flux 

parameter; 
St, Stanton number, h/pu,CP; 
St~~/(c~l2), Spalding function; 3 
7: difference in temperature be- 

tween a point in the boundary 
layer, and the mainstream; 

T U’, d@erence in temperature 
between wall and main- 
,stream; 

a, velocity in boundary layer, 
parallel to surface; 

* This is a part of a research sponsored by U.S. Air- 
force under contract number AF61(052)--267. 

t University of Nottingham, England. 
$ The College of Aeronautics, CranSeId, England. 
4 Note that this detinition differs from that of Kestin 

and Persen 121 who use Sf Pr/ v (42). 

velocity in mainstream; 
dimensionless velocity in bound- 
ary layer, defined by equation 
(5); 
friction velocity, 2/(~Jp); 
velocity of the fluid, normal to 
the wall ; 
co-ordinate of distance along 
the wah; 
dimensionless distance along the 
wall, defined by equation (3); 
dimensionless distance between 
points x = a and x = b, defined 
by equation (27); 
distance normal to the wall; 
dimensionless distance normal 
to the wall, defined by equation 
(4); 
thermal diffusivity, k/PC@; 
dimensionless thermal diffusiv- 
ity, decked by equation (7); 
eddy viscosity; 
dimensionless eddy viscosity, 
defined by equation (6) ; 
eddy thermal diffusivity; 
dimensionless temperature T/Tw; 
value off? at point c for constant- 
heat-flux parameter between 
x=aandx=b; 
kinematic viscosity of the fluid; 
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PY 
5, 

TW, 

density of the fluid; 
dimensionless distance from the 
wall, defined by equation (8); 
shear stress at the wall, 

INTRODUCTION 

SPALDING [l] has introduced a “law of the wall” 
in which the dimensionless distance from the 
wall is given as a single function of the dimen- 
sionless velocity. Using a transformation of the 
energy equation due to Spalding [l], it is possible 
to compute temperature fields for the cases: 

(1) step function of wall temperature; 
(2) step function of the heat-flux parameter 

4sIPGd(cfi2>. 

Computation of these cases then permits solu- 
tion of the cases: 

(1) arbitrary distribution of wall temperature; 
(2) arbitrary distribution of wall heat flux. 

The step function of wall temperature has 
been dealt with by Kestin and Persen [2], for 
Prandtl number unity. The step function of wall- 
heat-flux parameter is dealt with in the present 
paper for Prandtl number 0.7, 1 .O and 7. The 
last section of the paper shows how to compute 
the temperature at the wall, and within the 
boundary layer, for an arbitrary distribution of 
the heat flux at the wall. 

THEORY 

By use of the Von Mises transformation, 
Spalding [l] has reduced the energy equation 
for a turbulent incompressible boundary layer 

u$++$[+ %;I (1) 

into 

-=----- (2) 

where 

x+ = s ’ v'(~P) dx = 2 u, dx s --- (3) a V a V 

y+ = jWP) y = u,y 
V V 

= i and U+ = &(y+) 
7 

(5) 

(this implies that shear stress is independent of y) 

(7) 

Further, using a new variable E defined by 

d.$ = ;I du-‘-, (8) 

equation (2) can be reduced to 

(9) 

Boundary conditions are 

T-O at ~=CG 
T=O at x+<O. (10) 

An additional boundary condition in the present 
solution is 

ar (-1 38 5=0 
= const. (11) 

Spalding [l] has derived a single expression 
for the distribution of the velocity and in the 
universal turbulent boundary layer in the form 
of y+(u+) instead of the usual form u+(y+). It is 

y+ z u+ 

(Ku+)2 (Ku+)3 
eKU+_l_-_~~‘-___ .-- 

2! 3! 

(Ku+)~ 
---. 

4! 1 (12) 
with K = O-407 and 1 /E = 0.099 1. 

From equation (12) an expression for E+ can 
be obtained, using equation (6). This gives 

Ef = 1 

+ K (Ku+)~ (Ku+)" 
E 

eKU+ _ 1 - Ku+ - __ 
2! 

--_. 
3! I 

(13) 

A further assumption that the turbulent Prandtl 



THE CALCULATION OF WALL AND FLUID TEMPERATURES 1181 

numbcr is unity (Q = l ) teads to an expression 
for n+ 

1 
aL xz 

Pr 

(14) 

Therefore the quantity u+a+, for various Prandtl 
numbers, can be obtained as a function of 4. 
This reduces equation (9) to 

(151 

The values of f’(E) for Pr =.= 0.7, 1 and 7 are 
shown in Fig. 1. 

:4-- Y’. 
From Spoldmqr 

: , , :, velocsly profile 

FIG. 1. ~dhfZS of U’ a : (f). 

For the case of uniform surface temperature, From Fig. 2 it can bc seen that all the values 
various investigators have solved equation (I 5). of temperature can be calculated for T(z~.+do+) 
Spalding [l] has solved it approximately for from T(~+), except for two end values, one at the 
Pr = 1, by use of the energy integral equation wall and the second at 6 ---= sCma,. The latter 
and by assuming a temperature protile in the difficulty was met by selecting tmax so high that 
boundary layer. Muralidharan [3] has solved it T there was zero. The value of Tat the wall was 
on an analogue computer for Pr = 0.7, 1 and 7. obtained by adding the wall temperature 

Kestin and Persen f2] have solved it on a digital 
computer for Pr :z 1. 

In the present paper, a solution of equation 
(15) has been made for uniform aT/iif at the wall 
and for Pf ::= 0.7, 1 and 7. 

KUMERICAL SOLI;TJON 

It will be seen that equation (15j is very similar 
to the heat-conduction equation, and may be 
solved by the finite difference mothod of E. 
Schmidt. 

The equation (15) can be written in finite- 
difference form as 

From equation (161, T(ZL.tdz+) can be calcu- 
lated from TfZ- 1 which in turn can be calculated 
from 7(, i. -AZ+ 1, and so on. The grid for the 
finite-difference scheme is shown in Fig. (2). 

14 24 
-h 

4 

t 
I3 

4 

12 

x+ X’ &p 

FIG. 2. Grid for the finite difference scheme. 
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gradient x dtJ to the value of the temperature at 
(X’ + Llxf, 05). 

Table 2. Steps chosen for Pr = 0.7 

To obtain the numerical results in solving 
equation (15), the complete calculations were 
made for an arbitrary value (aT/a~)S=o = - 40, 
and later the results were made dimensionless. 
The number - 40 has no particular significance. 

It was not possible to start the solution at 
x+ = 0 because the temperature at all values of 
[ at x+ = 0 was zero. This difficulty was over- 
come by starting the solution at a very low value 
of x+ called xt. The starting value of xt for 
(aT/i3&S=o = -- 40 was selected such that the 
temperature at all values of t was zero except 
at the surface. This first-assumed value of the 
surface temperature T,, was obtained from the 
approximate analysis of Smith and Shah [4]. 
The final results, when checked by integrating 
the heat flux, showed that they were not affected 
by any error in this assumption. The starting 
values for various Prandtl numbers are given in 
Table 1. 

Interval x+ Ax+ A[ Max. A( 

0 -1 0.05 0.5 0.5 
1 -10 0.1 0.5 0.5 

10 -102 I 0.5 1 
102-103 1 0.5 1 
104-105 50 0.5 4 
105-106 500 0.5 8 

Table 3. Steps chosen for Pr = 1 

Interval x k Ax+ A5 Max. A( 

0 -1 0,025 0.5 0.5 
1 -10 0.5 1 1 

10 -10” 1 1 1 
102-103 4 1 2 
103-104 20 I 4 
104-105 25 1 4 
105-106 250 1 8 

Table 1 Table 4. Steps chosen for Pr = 7 

Pr T “1 x+1 A5 

0.7 19.30 0.050 0.5 
1.0 19.41 0.025 0.5 
7.0 38.50 0.004 1.0 

Interval xc Ax+ Af Max. A( 
__.- 

0 -1 0905 1 1 
1 -10 0.05 1 2 

10 -102 0.5 1 4 
102-103 1 2 6 
103-104 5 2 8 
104-105 25 2 14 

The solution by the method of E. Schmidt is 
stable only if the condition 

Ax+ -~ 
f(O(A5)” < ’ 

(17) 

is fulfilled throughout. Since it was decided to 
solve the equation up to x+ = 10s, the interval 
Ax+ was increased gradually as shown in Tables 
2-4. With the increase in the interval Ax+, it 
became necessary to increase 06 near the surface 
(low values of 5) to fulfill the above condition. 
As the values off(f) increase with 8, the interval 
A[ was gradually reduced for the calculations 
away from the surface. Near the surface, the 
temperature profile gradually became linear and 
therefore this increase in 06 near the wall, with 
the increase in the interval Ax+ did not impair 
the accuracy of the final results. 

FORM OF PRESENTATION OF THE RESULTS 

The numbers resulting from the computations 
are temperature differences T in 5, xf co- 
ordinates, with (aT/&$)5=o = - 40. Heat-trans- 
fer coefficients may be computed conveniently 
from such results in terms of the “Spalding 
function” St/z/(cf/?), by the relation, deduced 
from equations (4), (8) and (12), 

St @WO~=o 

VTCfP) Tw ’ 
(18) 

Thus [St/z/(cf/2)] (x+) can be presented. Note, 
further, that 
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Assuming that cf/2(x) and z.+(x) are known 
for a specific example, x+(x) may be computed 
from equation (3). Hence, from [st/4(cf/2)] (x4), 
St(x) may be computed. Then, knowing the 
constant value of ~~/pCz1u11/(c~/2), TW may be 
found. Treatment for arbitrary 4: is shown in a 
later section. 

For the temperature within the boundary 
layer, it will then suffice if 8(5, x+) be presented. 

A practicable presentation is thus of 
LWl/(c.G>l (~9 and W, x+1. 

CHECK BY HEAT BALANCE 

An integral form of equation (15) may be 
derived by integrating it along the f co-ordinate. 
Thus 

d m -J dx+ ,, 

In our solution (aT/a&l=o = const. and there- 
fore 

xf, (21) 

Therefore, from equations (18) and (21) we have 

s co B&a+ d< = st I- -x * 

l/w3 
(22) 

0 

The temperature promes obtained in the 
numerical solution were integrated at various 
sections and the integrated heat fluxes were 
compared with the Spalding function and x+ 
as shown in equation (22). Comparisons for 
various Prandtl numbers are tabulated in Tables 
5-7. The results were found reasonably satis- 
factory. 

Table 5. Integrated check of the results for Pr = 0.7 !f 
- 

X+ 
st 

7mF 0 J * Bufaf d[ % difference 

10 3.810 3,838 + 0.72 
102 17.97 18.07 + 0.54 
103 97.15 97.21 + 0.05 
104 653.6 652.4 -0.18 
105 4952 4876 - 1.54 
108 39 660 39 780 $0.30 
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Table 6. Integrated check of the results for Pr = 1 

- 

Xf 
St co izw+ 0 I 

&+a+ df y0 difference 

10 2.965 3,010 fl*51 
102 14.18 1422 + 0.30 
103 77.28 77.48 0.27 
104 544.1 546.6 -I- 044 
l@ 4293 4298 +O*ll 
106 35 320 35 190 -0.37 

Table 7. Integrated check of the results for Pr = 7 

--__ 

x+ --?-X+ 
%&,/21 I m Bu+afd[ % difference 

0 

10 0.8185 07994 - 2.33 
102 3,844 3.856 +031 
103 20-75 20.57 -0.87 
104 171.3 171.2 - 0.06 
105 1571 1579 +@52 

DEPENDENCE OF THE SPALDING FUNCTION 

AND 0 ON THE PRANDTL NUMBER 

The results of the calculations in terms of the 
temperature profiles are shown in Figs. 3-5. 
The values of the Spalding function for various 
values of x+ and for Prandtl numbers 0.7, 1 and 
7 are tabulated in Tables 8-10 and plotted in 
Fig. 6. 

FIG. 3. Temperature profiles for Pr = 0.7. 
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Fla. 4. Temperature profiles for Pr .- I. FIG. 5. Temperature profiles for Pr -7 7. 

Table 8. The spalding function St/ \f’(c,/2) fhr Pr = 0.7 Table 9. The Spalding function St/\,‘(c,/2) for Pr L-Z: 1 

IO 
20 
30 
40 
50 
60 
70 
80 
90 

1 x 102 
2 x 102 
3 ,*. 102 
4 :i 102 
5 ,< 102 
6 :< 102 
7 x 102 
8 x lo2 
9 ,i 102 

0.801678 
0.642647 
0~563886 
0.5136991 
0.471754 
0.4502 15 
O-428144 
0.409884 
0.394414 

0.381063 
0.300255 
0.263463 
0.240197 
o-223636 
0~211018 
0=200964 
0.192695 
0.185731 

0.179756 
0~146030 
0.130328 
0.120738 
0~114OYl 
0.109125 
0.105228 
o-102059 
0.0994 13 

0.097158 
0.08442 L 
O-078568 
0.074916 
0.072325 
0070346 
0.068760 
0.067446 
0.066330 

0.065363 
0.059528 
O-056654 
0.054776 
@OS3401 
0.05232s 
0.051448 
0.0507 11 
0.05~77 

O-049523 
0.045895 
0~044175 
0.043020 
0.042159 
O-042476 
0.0409 13 
0.040436 
0.040023 
0.039660 

XL 
-- _._---. 

1 a++1424 
2 0.49137 
3 0.43354 
4 0.39639 
5 0~36957 
6 0.34889 
7 0.33224 
8 0.31841 
9 0~30667 

10 O-29650 
20 0.23723 
30 0.20810 
40 0% 18965 
50 0.17709 
60 O- I 6652 
70 O-15856 
80 0*15201 
90 0~14650 

1 i( 10% 0.14177 
2 x 10” 0.11513 
3 Y 102 0*10281 
4 x 102 0.095 10 
5 /: lo” 0.08998 
6 .*: 102 0.08621 
7 x lo” O-08327 
8 x IO2 a0809 1 
9 v 102 0.07894 

0.07728 
0.~67892 
0~063685 
0~061115 
O-059300 
O-057914 
0~056803 
0.055880 
0.055095 

0.054413 
0*050335 
0.048244 
OaO46863 
W345843 
0*045042 
0@44385 
O-043830 
a*04335 I 

@04293 I 
0.040295 
0.038927 
0~038007 
0*037319 
0.036774 
O”O36324 
0.035943 
0.035612 
O”O3532 k 
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x 

.& _ J 44 i ,: dx -.._ 

V 
cl 

FIG. 6. The Spalding function [St/z/(cf/2)! (x+) for Pr = 0.7, 1 and 7. 

Table 10. The Spaldingfitnction St/~/(c,/Z) for Pr = 7 
h I 

I 
I I 

SC 
X+ d(c,/2) 

1 0.172205 1 x 103 O-020749 
2 0.137977 2 x 103 0.018916 
3 0.121054 3 x 10” 0.018277 
4 0.110283 4 x 103 0.017932 
5 0.102576 5 x lo” 0.017705 
6 0.096672 6 x lo3 0.017537 
7 O-09 1940 7 x 103 0.017406 
8 0.088025 8 x 103 0.017297 
9 0.084709 9 x 10’ 0.017206 

10 0.081847 
20 0.064768 
30 0.056777 
40 O-051701 
50 0.048080 
60 0.045315 
70 0.043 107 
80 0.041289 
90 0.039754 

1 x 104 0.017127 
2 x 104 0.0 16646 
3 x 103 0.016395 
4 x 104 0.016225 
5 x 104 0.0 16096 
6 x lo* 0.015993 
7 x 104 0.015907 
8 x lo4 0.015834 
9 x 104 0.015770 

105 0.015713 

1 x 102 0.038435 
2 x 102 0.03084 1 
3 x 102 O-027396 
4 x 102 0.025336 
5 x 102 0.023950 
6 x IO” 0.022950 
7 x 102 0.022196 
8 x IO2 0.021607 
9 x 102 0.021135 

st 
Xf z/‘(c,P) 

40 

30 

20 

IO 

ti tr.2 0.4 0.8 

FIG. 7. Temperature profiles for various Prandtl 
numbers (x+ = 100) (laminar region). 

Having performed these calculations and 
checks, an effort was made to find the depen- 
dence on Prandtl number ofthe Spalding function 
and the temperature profile in the form 

St St 

l/Ccr/2) wh/2N(Pr=1) 
x PP. (23) 

Results for Pr = O-7, 1 and 7 showed that in the 
laminar region (up to x + = 1000) the value of n 
remains constant and is equal to - 2/3; but, for 
higher xf, the value of n when obtained from the 
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results for Fr = 0.7 and 1, changes from - Z/3 
at x+ = 1000 to - O-4 at xf = IO6 and - 0,325 
at x+ = IO6 , whereas from the results for 
Pr = 7, the value of n decreases from - 213 at 
x+ = 1000 to - 0.516 at x+ = 106. 

In the laminar region (x+ < 1000) the 
temperature profile for any Prandtl number can 
be obtained from 

@ (6) = 0 (8,) W= 11 (24) 
where 

6 = r x Pru3. (25) 

Temperature profiles for various Prandtl 
numbers and for xf = 100 are shown in Fig. 7. 

APPLICATION OF THE SOLUTIONS TO THE 

CASE OF ARBITRARY HEAT FLUX AT THE WALL 

The working equation by which the numerical 
solutions given in this paper may be applied is 
equation (32) below. A full statement of its 
development is given in sections A and B 
following. 

A. ~ete~minat~o~ of tem~e$at~re at the wall 
The numerical solutions given in the previous 

sections have the boundary condition 
(&“‘/a& = const. x+ > 0. From the definitions 
of the variables in equations (6-8) and earlier, 
together with the velocity-law equation (12), 
this boundary condition is the same as 
[&/purC&./(cf/;?)] = const. That is, the heat flux 
parameter is constant. 

This boundary condition is highly particular: 
usually problems will be met in the form of a 
specified distribution of &, with ZO(x) the 
quantity desired to be known. 

However, the treatment of the problem of 
arbitrary 4: will be most easily perceived after a 
recapitulation of the method of determination 
of &Jx) for constant gi/pyC&(cf/2). 

Fig. 6 gives values of the Spalding function 
[St/l/(cf/2)] (Pr, x+). If St/d(c,/2) be known at 
a given x, then TW is given by 

In Fig. 6, heat inj~tion starts at x = a. The 
problem is, then, to calcuiate the temperature 
TW(b) at x = b, consequent on constant 

~~~p~~C~~(c~lZ) between x = a and x = b. 
Define a new variable x&b by the equation 

b d(‘df) dx. 

a V 
(27) 

Then x,$ is easily calculable, knowing TV, p 
and v. From Fig. 6, [&?/d(cf/2)]a,b may be read 
off, for x+ = x,+6. This quantity is the value of 
[St,fq‘(c~/iz)] at ‘x = b consequent on constant 
[~~~~~~C~~(C~~~)] from x = a to x = b. Then at 
x = b the difference T&,(6) between wall tem- 
perature and mainstream is given by 

I 
a’ (28) 

It must be particularly noted that equation (28) 
holds for constant &/pulC,z/(cJ2) between 
x = a and x = b. However, in the general 
problem, &/pu,C&/(cf/2) will be a function of 
x. Knowing @z(x), U,(X), C&Y), the dependence of 
~~/~~~C~~~C~~~) on x may be computed. The 
temperature at the wall at x = b is then given 
by the Stieltjes integral 

L 
.I, 

d_ qw I P%Gd~CfJ2~ a' 
(29) 

Equation (29) is the working equation for the 
determination of wall temperature. In equation 
(29), [&%/$/(cf/2)]Q is the value of St/z/(c#) 
at b, consequent on constant ~~/pu~C~~(cf/2) 
between x = a and x = b, d[~~~~~~C~~(c~~2}]~ 
is the increment of heat-flux parameter for the 
increment dx containing x = a. It may be more 
convenient for computation if equation (29) is 
rewritten : 

J 
b 1 

T w(b) = 
-_____-I- 

o [St/d(@)la,b 

d 
.n 
9, 

dX ~zq&qCf/2) a 1 dx. (30) 

In evaluating equation (30), however, it must be 
noted that if there is a step in ~~/~~~C~~(C~/~~, 
this step cont~butes an increment of Twp) given 
by 
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increment. 
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temperature on a scale such that mainstream 
temperature is zero and wall temperature is 
unity. The temperature at a point in the bound- 
ary layer is defined if TW and 6’ be known. The 
relation is: T = BT,. 

(31), the symbol A signifies a finite 

B. Determination of temperature within the 
boundary layer 

The previous section showed the method of 
computing wall temperature consequent on an 
arbitrary distribution of wall heat flux. A further 
problem is, however, the determination of 
temperature within the boundary layer. Again 
the method will be seen more easily if the 
computation for constant 9~/pu1CPz/(cf/2) is 
first considered. 

Temperatures within the boundary layer have 
been presented in Figs. (3-5) as 8(x+, 8, Pr). 0, 
defined as in the Nomenclature, is in fact 

Concentrating our attention on the case of 
constant &,/pu,CP~(cf/2), and temperature 
difference between wall and mainstream at 
x = b, called TW (z,), may be found by the method 
of the previous section. The problem now is to 
find the fluid temperature at point c with co- 
ordinate x, y. Of the parameters in Figs. 3-5, 
x+ and Pr are already known. To determine 0 
and thus permit the determination of temperature 
at y, the dimensionless co-ordinate E must be 
determined for the point c. f is defined by 
equation (8), and equations (5-8) and (12-14) 
permit the function [(y+, Pr) to be computed. 
Results of this computation are shown in Fig. 8 
and Table 11. Using Fig. 8, E may therefore be 
found, after y+ has been determined from 
equation (4). Thence 0 may be read off Fig. 3, 4 

Table 11. ffj+, Pr) and Y+(u+) 

u+ Y+ [, Pr = 0.7 f, Pr = 7.0 u+ Yf t,Pr=O7 f, Pr = 7.0 

0 

: 
3 
4 

2 
7 
8 
9 

10 
11 

:: 
14 
15 
16 

0 0 0 
1 0.7 6.999 
2 1.4 13.99 
3.003 2.101 20.88 
4.013 2.803 27.50 
5.042 3.509 33.48 
6.115 4.223 38.48 
7.274 4.953 42.35 
8.590 5.702 45.25 

10.18 6.496 4744 
12.23 7.322 49.18 
15.04 8.189 50.62 
19.06 9.092 51.90 
24.98 10.02 53,07 
33.88 10.98 54.18 
47.36 11.95 55.25 
6788 12.92 56.29 
99.13 13.91 57.32 

146.7 14.90 58.34 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

:: 
35 
36 
37 

219.0 15.90 59.35 
328.6 16.89 60.36 
4946 17.89 61.36 
745.6 18.88 62.37 

1124 19.87 63.37 
1696 20.87 64.37 
2557 21.87 65.38 
3854 22.87 66.38 
5806 23.87 67.38 
8743 24.87 68.38 

13 160 25.87 69.38 
19800 26.87 70.38 
29 780 27.87 71.38 
44 780 28.87 72.38 
67 310 29.87 73.38 

101200 30.87 74.38 
152 100 31.87 75.38 
228 500 32.87 76.38 
343 400 33.87 77.38 

-_ 

(a) For Pr = 1, 6 = uf. 
(b) For y+ > 300 the following relations hold. 

y+ = 0.3255 exp (@4098 5) (Pr = 0.7), 
y+ = 0.09177 exp (04093 [) (Pr = 1.0 
y+ = 6.317 x 10-O (exp 0.4088 [) (Pr = 7.0). 
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the distribution uf rk heat-flux parameter may 
tx computed as dwribcd in the prevjous section 
of the paper, and the value of the diffcrsrlce in 
temperature betweerl point s and the ma~~strcam 
may lx computed by the Sticltjcs integral : 

Equation (33) is the general equation by which 
the results af this paper may be applied, since it 
comprehends equation (29) in that. at the wall. 

&J,,,. is unity. Again it may be more crmvenicnt 
for computation if the cquatihn is rewritten 

In the evaluation of equation (34) care must be 
taken in allowing for steps in j::/pu,C,,\ (cf/2), 
as WE. pointed out after equation (30). 
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2. J. KESTIN and L. N. PERSEN, Application of Schmidt’s work referred to by Spalding [l]. 
method to the calculation of Spalding’s function and 4. A. G. SMITH and V. L. SHAH, Heat transfer in the in- 
of the skin-friction coefficient in turbulent flow, Znt. compressible turbulent boundary layer on a flat plate 
J. Heat Muss Transfer, 5, 143-152 (1962). with arbitrary heat flux. J. Aerospace Sci. 28, 738-739 

3. R. MURAL~DHARAN, International developments in (1961). 

R&urn&-Une solution numerique de l’equation aux derivees partielles du transport de chaleur dans la 
couche limite turbulente incompressible a ete obtenue pour (&/PC, ul)l/\/(c,/2) constant et pour les 
nombres de PrandtlO,7, 1 et 7. La loi des vitesses de Spalding a et& adoptee et on a utilise la methode 
d’integration de Schmidt. Les distributions de temperatures dans la couche limite sont dcnnees pour 
des x+ allant jusqu’a 106, en meme temps que la fonction de Spalding St/d(q/Z). On donne une 
methode pour l’application de ces solutions au cas d’une distribution arbitraire du flux thermique a 

la paroi. 

Zusammenfassung-Fiir den Warmetibergang in der inkompressiblen turbulenten Granzschicht wurde 
die numerische Losung der partiellen Differentialgleichung bei konstantem Qy,/pCn rll (cr/2)-“” er- 
haltenftir Prandtlzahlen 0,7,1 und 7. Das Spalding-Gesetz der Grenzschichtgeschwindigkeit ist voraus- 
gesetzt, die Integration wurde nach der Schmidt-Methode durchgeftihrt. Die Grenzschichttempera- 
turverteilungen bis x+ = lo6 sind zusammen mit der “Spalding-Funktion” S~(C&!-‘/~ angegeben. Fur 

beliebige Verteilung des Warmeflusses an der Wand ist eine Losungsmethode beschrieben. 

AHHoTaqtiJr-rIongqeIr0 wcxewoe peureHIte ~ki@@epeH~~anbIIoro ypanHeHm B KIacTHhIx 

IIpOH3BO~HhIX &WI IIepeHOca TenJa II Typ6ylReHTHOM lTOrpaIlLNIIOM CJIOe HeCEiHMaeMO$i 

wi~~ocT14 nplf II~CT~FIHH~H mmwrre &/PC, uI(c&- 1/Z II :nIa~Ieminx IipnTepIlR HpaHnTtiTfI, 
parunIx 0,7,1 II 7. IIPHHHT 8aICoH Cnonamrra firm CKO~OCT~I norpaIIlzqHor0 CJIOR II HCnOJIb- 

30BaH MeTog mmTerpHposaHm LIImnTa. IIPMB~ARTCH 3Ha'Iemfn pacnpe~eneHm TemepaTyp 

norpaHwIHor0 ('20~1 no x + = lo6 mecTe c BQyHiqHeit Cno.zArrHrau SI(e#-“‘. Aaercn 
MeTox npnneIIeIInn peIIIeIImii I( cngyaro nponanonbnoro pacnpr~eneann T~II.~OHO~O IIoToua 

na crenue. 


